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Appendix A: Why the Bond et al Randomization P-values are Not Valid

Bond, Fariss, Jones, Kramer, Marlow, Settle, and Fowler (2013), Bond et al. from hereon, are also interested
in testing for spillovers (Hypothesis 2). They wish to use testing procedures that are robust to the network
structure. We show here analytically that there procedures are not valid in general, and can lead to over-
rejections of 0.05-level tests at rates as high as 0.20 because they ignore the variation arising from own treatment
e↵ects.

Bond et al. focus on the di↵erence between the average of an ego’s outcome over all edges where the alter is
exposed, and the average over all edges where the alter is not exposed:

T
B

(W,Y,G) =

P
i,j 6=i Gij ·Wj · YiP

i,j 6=i Gij ·Wj
�
P
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i,j 6=i Gij · (1�Wj)

. (A.1)

Under Hypothesis 2 the expected value of this statistic is zero, which makes it promising for testing this hy-
pothesis. However, because of the network structure there may dependence between the terms in each of these
averages, and its variance is di�cult to estimate for a general network structure.

Bond et al. look at a randomization-based distribution for this statistic to test the null hypothesis of no
spillovers. The distribution is obtained by re-assigning the treatment vector W, assuming there is no e↵ect of
the treatment whatsoever, and deriving from there the quantiles of the T

B

distribution. This implicitly assumes
for these calculations that there is no e↵ect of the treatment whatsoever (Hypothesis 1), which is stronger than
the no-spillover null hypothesis (Hypothesis 2) that they are interested in testing. The reason for this is that if
one allows for direct e↵ects of the treatment on the own outcomes, and only assumes no spillovers, one cannot
infer the value of the statistic T

B

for alternative values of the treatment assignment vector: the no-spillover null
hypothesis is not sharp. The concern is that using the randomization that is based on a stronger null hypothesis
is not innocuous. Bond et al justify the use of this method using simulations in which the stronger null is true.

Here we show through analytic calculations for a particular example that p-values based on these calculations
are not valid, even in large samples, let alone in finite samples, and that the deviations from nominal rejection
probabilities can be substantial. In general, because their calculations ignore one source of variation in the
distribution of the statistic, the p-values will be too small, leading to rejections of 0.05-level tests at rates as high
as 0.20.

We focus on an example with a particular network structure that allows us to simplify the large sample
approximations. The population consists of 2 · N units, partitioned into N pairs. Out of these 2 · N units N
units are randomly selected to be exposed to the active treatment. We maintain the assumption that there are
no spillovers. The potential outcomes are

Yi(0) = 0, and Yi(1) = 1,

so that the direct treatment e↵ect is equal to 1. The N pairs can be partitioned into three sets: M
00

pairs with
both units exposed to the control treatment, M

01

pairs with exactly one unit exposed to the control treatment
and one unit exposed to the active treatment, and M

11

pairs with both units exposed to the active treatment.
The number of each of these sets, M

00

, M
01

, and M
11

are random, but, because the total number of pairs is
fixed at N , it follows that M

00

+ M
01

+ M
11

= N , and because exactly N units are exposed to the active
treatment, it must be the case that M

00

= M
11

. Hence we can rewrite these numbers in terms of a scalar
random integer: define M = M

11

, so that M
00

= M , and M
01

= N � 2 · M . The expected value of M is
N · (1/2) · ((N � 1)/(2 ·N)) ⇡ N/4. However, the variance is not N · (1/4) · (3/4) because of the fixed number
of treated units. We can approximate the large sample distribution of

p
N(M/N � 1/4) by looking at the joint

distribution for (
p
N · (M
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/N � 1/4),
p
N · (M

01

/N � 1/2),
p
N · (M

11

/N � 1/4)), based on independent random
assignment to the treatment for each unit. This leads to
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Now define M = M
11

and condition on M
01

/N + 2 · M
11

/N = 0. Because the correlation between
p
N ·

(M
11

/N � 1/4) and
p
N · (M

01

/N + 2 ·M
11

/N is ⇢ = 4/sqrt24, the conditional variance of
p
N · (M
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[31]



given
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Now consider the statistic T
B

. We calculate first the actual distribution of this statistic under the random-
ization distribution. Then we compare this to the distribution Bond et al use for the calculation of p-values.

There are 2 · N edges. Out of these N have treated alters and N have control alters. For the N edges
with treated alters 2 · M

11

= 2 · M have treated egos, and so have realized outcome equal to Yi(1) = 1, and
M

01

= N � 2 · M have control egos, and so have realized outcomes equal to Yi(0) = 0. The average realized
outcome for egos with treated alters is therefore 2 · M/N . Similarly, for the N edges with control alters, there
are 2 ·M

00

= 2 ·M edges with control egos and realized outcomes Yi(0) = 0, and M
01

= N � 2 ·M edges with
treated egos and thus Yi(1) = 1, leading to an average realized outcome equal to 1� 2 ·M/N . Hence the value
of the statistic is
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The actual distribution of the normalized statistic, under random assignment, is

p
N · T
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=
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✓
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N
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◆
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Now consider the distribution used by Bond et al for the calculation of their p-values. They calculate
the randomization distribution, assuming that there are no e↵ects of the treatment whatsoever. Under this
randomization distribution, there are always N egos with treated alters, and N egos with control alters. Out of
the 2 · N units there are N with realized outcome equal to 1 and N with realized outcome equal to 0, so that
the total average outcome is exactly 1/2. Hence, if the average of the outcome for the egos with treated alters
is equal to Y

t

, the average of the outcome for egos with control alters is equal to Y
c

= 1 � Y
t

. Therefore the
di↵erence in the average outcome for egos with treated alters and the average outcome for egos with control
alters is equal to 2 · Y

t

� 1. To infer the randomization distribution used by Bond et al, we need to infer the
distribution of Y

t

under their randomization distribution. We can write Y
t

as

Y
t

=
1
N

2NX

i=1

W p
i · Yi,

where W p
i is an indicator for unit i having a treated alter. We are interested in this distribution under random

assignment of Zi, with
P

2N
i=1

Zi = N , for fixed Y. (It is the treating of Y as fixed that is not correct here – if we
change the treatment of the alter for unit i we may be changing the value of the outcome for uniti’s alter. Thus
the Yi are stochastic, leading to additional variation in the test statistic that is not taken into account in the B
procedure.) Note that

P
2·N
i=1

Yi = N and
P

2·N
i=1

W p
i = N . The treatments (and thus the peer treatments) are

randomly assigned, with pr(W p
i = 1) = 1/2 and pr(W p

i = 1|W p
j = 1) = (N�1)/(2·N�1). Define Di = 2·W p
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so that W p

i = (Di + 1)/2, and
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, for j 6= i.
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=
1

4 ·N � 1
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⇡ 1
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Hence the variance of N · Y
t

is equal to 1/8, and thus the variance of Bond et al randomization distribution is
4 ·N · V(Y

t

) which is equal to 0.5. The actual distribution has variance equal to 1, which is twice as large. The
implication is that the for a two-sided test at the 0.05 level the rejection probability based on using the incorrect
Bond et al randomization distribution is 0.157. Bond et al implicitly use the wrong variance of 0.5 for the test
statistic, leading to

pr
⇣p

2 · |T
B

| > 1.96
⌘
= pr
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| >
p
2 · 1.96

⌘

= pr

✓
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B

| > 1.96p
2

◆
⇡ pr (|T

B

| > 1.386) ⇡ 0.157.

We carried out a small simulation study to verify these analytic calculations. We use N = 1000 pairs, 10,000
replications, and use 1,000 draws from the randomization distribution. We reject the null hypothesis if the Bond
et al p-value is less than 0.05. This leads us to reject at a rate equal to 0.153, close to the theoretical rejection rate
we calculated above which is equal to 0.157. (A 95% confidence interval for the rejection rate is (0.144, 0.163)).

Appendix B: Derivation of the Score Test Statistic for the Null of No Spillovers

In terms of the potential outcomes the linear-in-means model in (5.9) corresponds to

Y(w) = ↵
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·
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I � ⌧
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The expected value of the observed outcomes given the assignment is, given the random assignment,

E[Yobs|W = w] = E[Y(w)] = ↵
0

·
�
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endog

·G
�
�1
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direct

·
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Under the null hypothesis that ⌧
endog

= 0, the least squares estimates for the remaining parameters based on
outcomes for focal units are

↵̂
0

= Y
obs

F,0, and ⌧̂
direct

= Y
obs

F,1 � Y
obs

F,c,

where, for w = 0, 1, Y
obs

F,w is the average outcome for focal units with Wi = w,

Y
obs

F,w =
1

NF,w

X

i:Fi=1,Wi=w

Y obs

i , ,

and NF,w is the number of focal units with Wi = w. Hence the residual under the null is

"̂nulli = Y obs

i � ↵̂
0

�Wi · ⌧̂direct.

Under normality of the outcome the score for ⌧
endog

= 0 is proportional to the covariance of the residual under
the null and the derivative of the expectation in (B.2), with respect to ⌧

endog

, evaluated at ⌧
endog

= 0. The
derivative of the expectation at ⌧

endog

= 0 is

@
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Substituting Y
obs

F,0 for ↵
0

and Y
obs

F,1 �Y
obs

F,0 for ⌧
direct

suggests that a natural test statistic would be the covariance

of the residual under the null and Y
obs

F,0 ·G(◆N �W) + Y
obs

F,1 ·GW. This leads to the following average score:
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Because
PN

j=1

Gij = 1, in combination with the fact that the residuals average to zero, it follows that the score

statistic is proportional to the covariance between the residual under the null and
PN

j=1

Gij · Wj , which is the
fraction of treated neighbors, leading to the score statistic

T
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= Cov
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direct

·Wi,
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�����

NX
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!
,

which is the expression in (5.8).
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